CS 450: COMPUTER GRAPHICS

CLIPPING

SPRING 2015

DR. MICHAEL J. REALE
INTRODUCTION
CLIPPING DEFINED

• We now have our primitives (points, lines, polygons, etc.) in **normalized device coordinates**
 • In OpenGL → everything in unit cube from (-1,-1,-1) to (1,1,1) → clipping volume

• In terms of x and y → everything in rectangle from (-1,-1) to (1,1) → **clipping window**

• **Clipping** = removing part or all of the primitives outside of the clipping volume/window
 • May require intersection primitives with clipping volume/window boundaries
 • Converted to normalized device coordinates → more efficient to do clipping
You can have a non-rectangular clipping region

However, it’s not very common, and most algorithms assume a rectangular clipping window/volume with coordinate values going from (-1, 1)
CLIPPING WINDOW VS. VIEWPORT

- **Viewport** = determines where on display window the clipping window will be displayed
 - Defined with starting point and width/height (*in pixels*)
 - May be (and most probably is) a different aspect ratio than clipping window
 - Can have multiple viewports
To set the viewport in OpenGL:

```c
void glViewport(
    GLint x, // Starting x in pixels
    GLint y, // Starting y in pixels
    GLsizei width, // Width in pixels
    GLsizei height); // Height in pixels
```
CLIPPING ALGORITHMS

• Clipping algorithms can be 2D or 3D
• The clipping algorithm also may clip:
 • Points
 • Lines
 • Fill-Areas (Polygons)
 • Curves
 • Text
• We will start with 2D clipping algorithms first.
2D CLIPPING ALGORITHMS: INTRODUCTION
POINT CLIPPING IN 2D

• Not much to say here; as long as the point coordinates are within the window, draw the point:

\[
\begin{align*}
x_{\text{min}} & \leq x \leq x_{\text{max}} \\
y_{\text{min}} & \leq y \leq y_{\text{max}}
\end{align*}
\]

• Otherwise, do not draw the point

• Useful for particle systems
LINE CLIPPING: BRUTE FORCE

- Test endpoints p1 and p2 of line:
 - If both INSIDE all boundaries → line completely inside → keep line
 - If both OUTSIDE ONE of the boundaries (completely on one side) → line completely outside → discard line
- If the above tests fail, line MAY intersect one or more of the boundaries
 - Convert the line to parametric form:
 \[x = x_0 + t(x_{end} - x_0) \]
 \[y = y_0 + t(y_{end} - y_0) \]
 \[0 \leq t \leq 1 \]
 - Intersect with each boundary (x = -1, x = 1, y = -1, and y = 1)
 - If 0 <= t <= 1 for a given intersection → line segment intersects boundary
 - Check inside portion of line with rest of boundaries
- No intersections with any boundaries → discard line
- One to two intersections → form new line
- Not very efficient → lots of line intersections
COHEN-SUTHERLAND LINE CLIPPING
INTRODUCTION

• **Cohen-Sutherland line clipping**
 • One of the earliest algorithms → variations still widely used
 • Does more tests before doing intersection calculations
 • Assumes rectangular clipping region

“Without the fun, none of us would go on.” – Ivan Sutherland
BASIC IDEA

• For each line endpoint → assign 4-bit **region code**
 • Each bit → refers to different window boundary/border
 • Most-significant to least-significant bits → Top, Bottom, Right, and Left boundaries
 • Bit = 1 → OUTSIDE of that window border
 • Example: Left = 1 → point is to the left (outside) of the left border
 • Bit = 0 → INSIDE or ON window border
 • Example: Left = 0 → point is to the right or on the left border
 • Region code → sometimes called “out code”
 • Four window boundaries → creates nine regions
COMPUTING REGION CODES

- Let’s say we have a line endpoint \((x,y)\); we need to compute its region code.
- For each bit of the region code, one can use inequalities \(\rightarrow\) e.g., if \(x < x_{\text{left}}\), then left border bit = 1.
- *Faster alternative:* use bit-processing operations.
 - **Step 1:** Get differences between \((x,y)\) and each window/clipping boundary.
 - Left = \((x - x_{\text{min}})\)
 - Right = \((x_{\text{max}} - x)\)
 - Bottom = \((y - y_{\text{min}})\)
 - Top = \((y_{\text{max}} - y)\)
 - **Step 2:** Use sign bit of result to get bit value:
 - \(\text{int bit} = (((\text{unsigned int})\text{result}) >> (\text{sizeof(int)}*\text{CHAR_BIT} - 1))\);
 - \(\text{CHAR_BIT} = \text{numbers of bits in a character (byte)}\)
 - \(0 = \text{positive}, 1 = \text{negative}\)
CHECKING ENDPOINTS

• If both endpoints have code 0000 → both inside clipping window → keep line

• If both endpoints have region code values with the same bit set to 1 → both points in the same “outside” region → outside of clipping window → discard line
 • Example: 1000 and 1010 → top boundary bit set → both points in top region (outside of window)

• Use logical OR and AND with region codes R_1 and R_2
 • If $R_1 \mid R_2 = false$ → both must be 0000 → completely inside
 • If $R_1 \& R_2 = true$ → one bit must be shared → completely outside

• If neither of these cases are true, then we need to intersect the line with the boundaries
 • If corresponding bit value flips → must intersect boundary
 • Example: 1000 and 0010 → “top” and “right” bits flip → must intersect top and right boundaries
GETTING INTERSECTION WITH BOUNDARIES

• Let’s say we have a line with two endpoints \((x_0, y_0)\) and \((x_{\text{end}}, y_{\text{end}})\)
 - Slope \(m\) is given by:
 \[
 m = \frac{y_{\text{end}} - y_0}{x_{\text{end}} - x_0}
 \]

• We intersecting our line from p1 to p2 with one of the following:
 - \(x = x_{\text{min}}\)
 - \(x = x_{\text{max}}\)
 - \(y = y_{\text{min}}\)
 - \(y = y_{\text{max}}\)

• For intersecting with vertical boundaries:
 \[
 y = y_0 + m(x - x_0)
 \]

• For intersecting with horizontal boundaries:
 \[
 x = x_0 + \frac{y - y_0}{m}
 \]
FULL ALGORITHM

• Given a line with two endpoints p1 and p2

• While not done:
 • (Re)compute region codes for p1 and p2 \(\rightarrow \) r1 and r2
 • If both are in clipping window \(\rightarrow \) break out of loop and KEEP line from p1 to p2
 • If both region codes share a bit that equals 1 \(\rightarrow \) outside of window \(\rightarrow \) break out of loop and DISCARD line
 • Otherwise:
 • If p1 is inside clipping window \(\rightarrow \) swap p1 and p2 (also swap r1 and r2)
 • Compute slope m
 • Check p1 against each boundary: top, bottom, left, right \(\rightarrow \) check if corresponding bit equals 1
 • If it is, compute intersection point \(\rightarrow \) set it to be the new p1
NON-RECTANGULAR CLIPPING?

• One downside of Cohen-Sutherland line clipping is that it only works for rectangular clipping regions
 • VERY common, but there might be cases where you want a non-rectangular clipping region
INTRODUCTION

• Liang-Barsky Line Clipping
 • Does even MORE testing before intersection calculations \rightarrow faster
 • Uses parametric line equations
 • Can be used with non-rectangular clipping regions
PARAMETRIC LINES AND CLIPPING

• We can define a line in parametric form using a parameter u as follows:

\[
\begin{align*}
 x &= x_0 + u\Delta x \\
y &= y_0 + u\Delta y \\
0 \leq u \leq 1
\end{align*}
\]

• Remember the point clipping conditions:

\[
\begin{align*}
x_{\text{min}} &\leq x \leq x_{\text{max}} \\
y_{\text{min}} &\leq y \leq y_{\text{max}}
\end{align*}
\]

• We combine these with the parametric line equations:

\[
\begin{align*}
x_{\text{min}} &\leq x_0 + u\Delta x \leq x_{\text{max}} \\
y_{\text{min}} &\leq y_0 + u\Delta y \leq y_{\text{max}}
\end{align*}
\]
TESTING CONDITIONS

• All our testing conditions have the form:

\[(u) p_k \leq q_k \quad k = 1,2,3,4\]

• Where \(p \) and \(q \) are defined as follows:

\[
\begin{align*}
 p_1 &= -\Delta x \quad q_1 = x_0 - x_{\min} \quad \Rightarrow \quad -u\Delta x \leq x_0 - x_{\min} \quad \Rightarrow \quad x_{\min} \leq x_0 + u\Delta x \\
 p_2 &= \Delta x \quad q_2 = x_{\max} - x_0 \quad \Rightarrow \quad u\Delta x \leq x_{\max} - x_0 \quad \Rightarrow \quad x_0 + u\Delta x \leq x_{\max} \\
 p_3 &= -\Delta y \quad q_3 = y_0 - y_{\min} \quad \Rightarrow \quad -u\Delta y \leq y_0 - y_{\min} \quad \Rightarrow \quad y_{\min} \leq y_0 + u\Delta y \\
 p_4 &= \Delta y \quad q_4 = y_{\max} - y_0 \quad \Rightarrow \quad u\Delta y \leq y_{\max} - y_0 \quad \Rightarrow \quad y_0 + u\Delta y \leq y_{\max}
\end{align*}
\]

\[
\begin{align*}
 x_{\min} &\leq x_0 + u\Delta x \leq x_{\max} \\
 y_{\min} &\leq y_0 + u\Delta y \leq y_{\max}
\end{align*}
\]
The line intersects a given boundary when the following is true:

\[(u)p_k = q_k\]

Therefore, to get \(u\):

\[u = r_k = \frac{q_k}{p_k}\]

This gives us our intersection point.

If \(p_k = 0\), then the line is parallel to the boundary → check value of \(q_k\):

- If \(q_k < 0\) → completely OUTSIDE boundary
- Otherwise → INSIDE or ON boundary

\[x_{\text{min}} = x_0 + u\Delta x\]
\[x_0 + u\Delta x = x_{\text{max}}\]
\[y_{\text{min}} = y_0 + u\Delta y\]
\[y_0 + u\Delta y = y_{\text{max}}\]
VALUE OF P_K

• If $p_k = 0 \Rightarrow$ line is parallel to the boundary
• If $p_k < 0 \Rightarrow$ line goes from OUTSIDE to INSIDE the boundary
• If $p_k > 0 \Rightarrow$ line goes from INSIDE to OUTSIDE the boundary
FULL ALGORITHM

• Start with \(u_1 \) and \(u_2 \) (starting and ending parameter values of line)
 • \(u_1 = 0, u_2 = 1 \)
 • For each clipping boundary (can implement as nested if statements):
 • Compute \(p_k \) and \(q_k \) values
 • If \((p_k \neq 0) \)
 • Compute \(r_k = \frac{q_k}{p_k} \)
 • If \((p_k < 0) \) → OUTSIDE to INSIDE → \(u_1 = r_k \) ONLY if line will be shorter
 • If \((p_k > 0) \) → INSIDE to OUTSIDE → \(u_2 = r_k \) ONLY if line will be shorter
 • If at any point \((u_1 > u_2) \) → REJECT LINE
 • Otherwise \((p_k = 0) \)
 • If \((q_k < 0) \) → line is parallel to AND outside boundary → REJECT LINE
 • If after all boundary checks line is NOT rejected → use values of \(u_1 \) and \(u_2 \) to compute line endpoints
LIANG-BARSKY VS. COHEN-SUTHERLAND

• Liang-Barsky \rightarrow generally more efficient than Cohen-Sutherland
 • Only one divide per boundary check
 • Window intersections only computed once when final values of u_1 and u_2 are computed
 • Cohen-Sutherland \rightarrow may repeatedly calculate intersections, even if line is completely outside clip window

• To extend to non-rectangular clipping regions \rightarrow use parametric lines for boundaries
POLYGON FILL-AREA CLIPPING: INTRODUCTION
LINE CLIPPING VS. POLYGON CLIPPING

• Polygon clipping → cannot just use line clipping on the edges! → in general, does not produce closed polyline!
CLIPPING POLYGONS

• We can look at the vertices of the polygon:
 • If ALL inside clipping boundary → KEEP polygon
 • If ALL outside any ONE of the boundaries → DISCARD polygon

• Otherwise → locate polygon intersection positions with clipping boundaries
 • Convex → check each boundary → output new vertex list to next boundary check
 • Concave → must be able to output MULTIPLE vertex lists (polygon may break up into multiple polygons)
SUTHERLAND-HODGMAN POLYGON CLIPPING
INTRODUCTION

- **Sutherland-Hodgman Polygon Clipping**
 - By default, only handles convex polygons → only produces one list of vertices
 - Can be modified to do concave as well
BASIC IDEA

• Sends pairs of endpoints through a series of clippers: left, right, bottom, top
• For a given pair of endpoints v1 and v2, there are 4 possibilities with respect to a boundary:
 • Both v1 and v2 are INSIDE → output v2 only
 • v1 is INSIDE and v2 is OUTSIDE → intersect v1-v2 with boundary to get v2’ → output v2’
 • Both v1 and v2 are OUTSIDE → output NOTHING
 • v1 is OUTSIDE and v2 is INSIDE → intersect v1-v2 with boundary to get v1’ → output v1’ AND v2
<table>
<thead>
<tr>
<th>Input Edge:</th>
<th>Left Clipper</th>
<th>Right Clipper</th>
<th>Bottom Clipper</th>
<th>Top Clipper</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1,2}</td>
<td>(in-in) → {2}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{2,3}</td>
<td>(in-out) → {2'}</td>
<td>{2,2'}: (in-in) → {2'}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{3,1}</td>
<td>(out-in) → {3',1}</td>
<td>{2',3'}: (in-in) → {3'}</td>
<td>{2',3'}: (in-out) → {2''}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>{3',1}: (in-in) → {1}</td>
<td></td>
<td>{3',1}: (out-out) → {}</td>
<td></td>
</tr>
<tr>
<td>{1,2}: (in-in) → {2}</td>
<td>{1,2}: (out-in) → {1',2}</td>
<td>{2'',1'}: (in-in) → {1'}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{2',2'}: (in-in) → {2'}</td>
<td>{1',2}: (in-in) → {2}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{2',2'': (in-in) → {2''}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PARALLEL EXECUTION

- As soon as one clipper outputs a pair of endpoints, it can pass it to the next clipper \(\rightarrow \) allows parallel execution of clipplers 😊
CONCAVE POLYGONS?

• Only one vertex list sent along → last vertex linked with last vertex
 • Can create extraneous lines if we try to process concave polygons

• Alternatives:
 • Split polygon into convex polygons
 • Check for multiple intersection points on each boundary → split lists (non-trivial to do this, however)
 • Use another algorithm
WEILER-ATHERTON POLYGON CLIPPING
INTRODUCTION

• **Weiler-Atherton Polygon Clipping**
 - Works with both convex and concave polygons
 - Also works with any shape clipping region
BASIC IDEA

• Trace around perimeter of polygon \rightarrow look for borders that enclose clipped fill region
 • Follow (clockwise or counterclockwise) path around polygon
 • If we hit the clipping boundary \rightarrow follow boundary until we hit polygon again
• Can get multiple fill regions \rightarrow separate, unconnected polygons
WEILER-ATHERTON ALGORITHM

• Start at first polygon vertex and follow POLYGON boundary; output vertex list = P = {}
• While any polygon vertices are “unprocessed”
 • If current vertex unprocessed AND (current vertex inside OR on clipping boundary) → add to P
 • Go to next vertex
• If following POLYGON boundary:
 • If next vertex = previously processed vertex
 • Output P as new polygon, and clear P to start over → current vertex = last INSIDE-OUTSIDE intersection point
 • If next vertex = intersection point (INSIDE → OUTSIDE)
 • Start following CLIPPING boundary → current vertex = next vertex
 • Otherwise → current vertex = next vertex
• If following CLIPPING boundary:
 • If next vertex = intersection point (OUTSIDE → INSIDE)
 • Start following POLYGON boundary
 • Current vertex = next vertex
Start at V1
 Follow polygon to intersection point V1' -->
 Switch to boundary
 Remember to come back to V1' later
 Follow boundary to B2
 Follow boundary to intersection point V3' -->
 Switch to polygon
 Follow polygon to V1 -->
 Already processed; output polygon

Output: \{V1, V1', B2, V3\}

Start at V1'
 Follow polygon to V2 --> outside
 Follow polygon to V3 --> outside
 Follow polygon to intersection point V3' -->
 Already processed; nothing to output
Start at V1
V1 to V1' --> add V1; follow boundary
V1' to B2 --> add V1'
B2 to V6' --> add B2; follow polygon
V6' to V1 --> add V6'; V1 already processed

Polygon 1 = \{V1, V1', B2, V6\}

Resume at V1'
V1' to V2 --> V1' already processed
V2 to V3 --> V2 outside
V3 to V4 --> V3 outside
V4 to V4' --> V4 outside
V4' to V5 --> add V4'
V5 to V5' --> add V5; follow boundary
V5' to V4' --> add V5'; V4' already processed

Polygon 2 = \{V4', V5, V5\}

Resume at V5'
V5' to V6 --> V5' already processed
V6 to V6' --> V6 outside; V6' already processed

No output polygon
3D CLIPPING ALGORITHMS
• With 2D clipping, we had 2D boundaries \(\rightarrow \) i.e., lines

• With 3D clipping, we have 3D boundaries \(\rightarrow \) i.e., planes
 • Assuming we have everything in normalized device coordinates, our boundary planes are:

\[
\begin{align*}
x_{\text{min}} &= -1 & x_{\text{max}} &= 1 \\
y_{\text{min}} &= -1 & y_{\text{max}} &= 1 \\
z_{\text{min}} &= -1 & z_{\text{max}} &= 1
\end{align*}
\]

• Moreover, a lot of our 2D clipping algorithms are extendable to 3D
3D REGION CODES
(EXTENDING COHEN-SUTHERLAND)

• In 3D, we use a **6-digit region code**: Far, Near, Top, Bottom, Right, Left
• Bit values:

<table>
<thead>
<tr>
<th>Bit</th>
<th>Condition</th>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>((1 + x) < 0)</td>
<td>Left</td>
</tr>
<tr>
<td>2</td>
<td>((1 - x) < 0)</td>
<td>Right</td>
</tr>
<tr>
<td>3</td>
<td>((1 + y) < 0)</td>
<td>Bottom</td>
</tr>
<tr>
<td>4</td>
<td>((1 - y) < 0)</td>
<td>Top</td>
</tr>
<tr>
<td>5</td>
<td>((1 + z) < 0)</td>
<td>Near</td>
</tr>
<tr>
<td>6</td>
<td>((1 - z) < 0)</td>
<td>Far</td>
</tr>
</tbody>
</table>
3D POINT AND LINE CLIPPING

- Point clipping \(\rightarrow \) keep only if region code = 000000

- Line clipping \(\rightarrow \) similar to Cohen-Sutherland
 - Both 000000 \(\rightarrow \) keep whole line
 - Both share a 1 bit \(\rightarrow \) reject whole line
 - Otherwise \(\rightarrow \) need to compute intersection points
3D LINE SEGMENTS

• Given two line endpoints P_1 and P_2, can use parametric form of line:

$$P = P_1 + (P_2 - P_1)u \quad 0 \leq u \leq 1$$

• $u = 0 \rightarrow P_1$
• $u = 1 \rightarrow P_2$

• Explicitly, this forms three equations:

$$x = x_1 + (x_2 - x_1)u$$
$$y = y_1 + (y_2 - y_1)u \quad 0 \leq u \leq 1$$
$$z = z_1 + (z_2 - z_1)u$$
3D INTERSECTION POINTS

• To get the intersection with each plane, we solve for u given the line equation and the plane equation

• Example: intersect line with $x_{\text{max}} = 1$:

\[
1 = x_1 + (x_2 - x_1)u \rightarrow
\]

\[
u = \frac{1}{x_1 + (x_2 - x_1)}
\]

• If $0 \leq u \leq 1$, then line segment intersects boundary plane

• If corresponding y and z coordinates equal $\pm 1 \rightarrow$ intersection point inside view volume

• Can progressively cut off parts of line outside boundaries and recompute region codes
DEALING WITH 3D OBJECTS

• Can test polyhedron for trivial acceptance or rejection:
 • Look at vertices
 • Look at bounding sphere
 • Etc.

• Otherwise, more complicated
 • One approach:
 • Divide surface into triangle strip
 • Clip triangles using Sutherland-Hodgman on each of the six clipping planes
 • Get output vertices of final strip
ARBITRARY CLIPPING PLANES

• Might want to:
 • Isolate / clip off irregularly shaped object
 • Eliminate part of scene (special effect)
 • Slice off section of object (show interior)
• Specify clipping boundary using full plane equation: \(Ax + By + Cz + D < 0 \)
 • Anything satisfying that equation \(\rightarrow \) clipped from scene
• Testing line segment:
 • Test endpoints (make sure not completely in front of or behind plane)
 • Otherwise, calculate intersection point:
 \[
 P = P_1 + (P_2 - P_1)u \quad 0 \leq u \leq 1
 \]
• Testing a solid object \(\rightarrow \) intersect each polygon face

\[
N \cdot P + D = 0 \rightarrow \\
N \cdot (P_1 + (P_2 - P_1)u) + D = 0 \rightarrow \\
N \cdot P_1 + N \cdot (P_2 - P_1)u + D = 0 \rightarrow \\
N \cdot (P_2 - P_1)u = -D - N \cdot P_1 \rightarrow \\
u = \frac{-D - N \cdot P_1}{N \cdot (P_2 - P_1)}
\]