CS 548: COMPUTER GRAPHICS

CLIPPING

SPRING 2015

DR. MICHAEL J. REALE
CLIPPING DEFINED

• We now have our primitives (points, lines, polygons, etc.) in **normalized device coordinates**
 • In OpenGL → everything in unit cube from (-1,-1,-1) to (1,1,1) → clipping volume

• In terms of x and y → everything in rectangle from (-1,-1) to (1,1) → **clipping window**

• **Clipping** = removing part or all of the primitives outside of the clipping volume/window
 • May require intersection primitives with clipping volume/window boundaries
 • Converted to normalized device coordinates → more efficient to do clipping
NON-RECTANGULAR CLIPPING REGIONS

- You can have a non-rectangular clipping region
- However, it’s not very common, and most algorithms assume a rectangular clipping window/volume with coordinate values going from (-1, 1)
CLIPPING WINDOW VS. VIEWPORT

- **Viewport** = determines where on display window the clipping window will be displayed
 - Defined with starting point and width/height (in pixels)
 - May be (and most probably is) a different aspect ratio than clipping window
 - Can have multiple viewports
VIEWPORT IN OPENGL

To set the viewport in OpenGL:

void glViewport(
 GLint x, // Starting x in pixels
 GLint y, // Starting y in pixels
 GLsizei width, // Width in pixels
 GLsizei height); // Height in pixels
CLIPPING ALGORITHMS

• Clipping algorithms can be 2D or 3D
• The clipping algorithm also may clip:
 • Points
 • Lines
 • Fill-Areas (Polygons)
 • Curves
 • Text
• We will start with 2D clipping algorithms first.
2D CLIPPING ALGORITHMS: INTRODUCTION
POINT CLIPPING IN 2D

• Not much to say here; as long as the point coordinates are within the window, draw the point:

\[x_{\text{min}} \leq x \leq x_{\text{max}} \]
\[y_{\text{min}} \leq y \leq y_{\text{max}} \]

• Otherwise, do not draw the point

• Useful for particle systems
LINE CLIPPING: BRUTE FORCE

- Test endpoints p1 and p2 of line:
 - If both INSIDE all boundaries → line completely inside → keep line
 - If both OUTSIDE ONE of the boundaries (completely on one side) → line completely outside → discard line

- If the above tests fail, line MAY intersect one or more of the boundaries
 - Convert the line to parametric form:
 \[
 \begin{align*}
 x &= x_0 + t(x_{\text{end}} - x_0) \\
 y &= y_0 + t(y_{\text{end}} - y_0)
 \end{align*}
 \quad 0 \leq t \leq 1
 \]
 - Intersect with each boundary (x = -1, x = 1, y = -1, and y = 1)
 - If 0 <= t <= 1 for a given intersection → line segment intersects boundary
 - Check inside portion of line with rest of boundaries
 - No intersections with any boundaries → discard line
 - One to two intersections → form new line
 - Not very efficient → lots of line intersections
COHEN-SUTHERLAND LINE CLIPPING
INTRODUCTION

- Cohen-Sutherland line clipping
 - One of the earliest algorithms → variations still widely used
 - Does more tests before doing intersection calculations
 - Assumes rectangular clipping region

“Without the fun, none of us would go on.” – Ivan Sutherland
BASIC IDEA

• For each line endpoint → assign 4-bit **region code**
 • Each bit → refers to different window boundary/border
 • Most-significant to least-significant bits → Top, Bottom, Right, and Left boundaries
 • Bit = 1 → OUTSIDE of that window border
 • Example: Left = 1 → point is to the left (outside) of the left border
 • Bit = 0 → INSIDE or ON window border
 • Example: Left = 0 → point is to the right or on the left border
 • Region code → sometimes called “out code”
• Four window boundaries → creates nine regions
Let’s say we have a line endpoint \((x,y)\); we need to compute its region code.

For each bit of the region code, one can use inequalities \(\rightarrow\) e.g., if \(x < x_{\text{left}}\) then left border bit = 1.

Faster alternative: use bit-processing operations

1. **Step 1**: Get differences between \((x,y)\) and each window/clipping boundary
 - Left = \((x - x_{\text{min}})\)
 - Right = \((x_{\text{max}} - x)\)
 - Bottom = \((y - y_{\text{min}})\)
 - Top = \((y_{\text{max}} - y)\)

2. **Step 2**: Use sign bit of result to get bit value:
 - \(\text{int bit} = ((\text{unsigned int})\text{result}) >> (\text{sizeof(int)}*\text{CHAR_BIT} - 1))\)
 - \(\text{CHAR_BIT} = \) numbers of bits in a character (byte)
 - 0 = positive, 1 = negative
CHECKING ENDPOINTS

• If both endpoints have code 0000 → both inside clipping window → keep line

• If both endpoints have region code values with the same bit set to 1 → both points in the same “outside” region → outside of clipping window → discard line
 • Example: 1000 and 1010 → top boundary bit set → both points in top region (outside of window)

• Use logical OR and AND with region codes R₁ and R₂
 • If R₁ | R₂ == false → both must be 0000 → completely inside
 • If R₁ & R₂ == true → one bit must be shared → completely outside

• If neither of these cases are true, then we need to intersect the line with the boundaries
 • If corresponding bit value flips → must intersect boundary
 • Example: 1000 and 0010 → “top” and “right” bits flip → must intersect top and right boundaries
GETTING INTERSECTION WITH BOUNDARIES

- Let’s say we have a line with two endpoints \((x_0, y_0)\) and \((x_{\text{end}}, y_{\text{end}})\)
 - Slope \(m\) is given by:
 \[m = \frac{y_{\text{end}} - y_0}{x_{\text{end}} - x_0} \]
 - We intersecting our line from \(p_1\) to \(p_2\) with one of the following:
 - \(x = x_{\text{min}}\)
 - \(x = x_{\text{max}}\)
 - \(y = y_{\text{min}}\)
 - \(y = y_{\text{max}}\)
 - For intersecting with **vertical** boundaries:
 \[y = y_0 + m(x - x_0) \]
 - For intersecting with **horizontal** boundaries:
 \[x = x_0 + \frac{y - y_0}{m} \]
FULL ALGORITHM

- Given a line with two endpoints p1 and p2
- While not done:
 - (Re)compute region codes for p1 and p2 → r1 and r2
 - *If both are in clipping window* → break out of loop and KEEP line from p1 to p2
 - *If both region codes share a bit that equals 1* → outside of window → break out of loop and DISCARD line
 - Otherwise:
 - If p1 is inside clipping window → swap p1 and p2 (also swap r1 and r2)
 - Compute slope m
 - Check p1 against each boundary: top, bottom, left, right → check if corresponding bit equals 1
 - If it is, compute intersection point → set it to be the new p1
One downside of Cohen-Sutherland line clipping is that it only works for rectangular clipping regions

- VERY common, but there might be cases where you want a non-rectangular clipping region
LIANG-BARSKY LINE CLIPPING
INTRODUCTION

- Liang-Barsky Line Clipping
 - Does even MORE testing before intersection calculations → faster
 - Uses parametric line equations
 - Can be used with non-rectangular clipping regions
PARAMETRIC LINES AND CLIPPING

• We can define a line in parametric form using a parameter u as follows:

\[
\begin{align*}
 x &= x_0 + u \Delta x \\
 y &= y_0 + u \Delta y \quad 0 \leq u \leq 1
\end{align*}
\]

• Remember the point clipping conditions:

\[
\begin{align*}
 x_{\text{min}} &\leq x \leq x_{\text{max}} \\
 y_{\text{min}} &\leq y \leq y_{\text{max}}
\end{align*}
\]

• We combine these with the parametric line equations:

\[
\begin{align*}
 x_{\text{min}} &\leq x_0 + u \Delta x \leq x_{\text{max}} \\
 y_{\text{min}} &\leq y_0 + u \Delta y \leq y_{\text{max}}
\end{align*}
\]
TESTING CONDITIONS

• All our testing conditions have the form:

\[(u)p_k \leq q_k \quad k = 1, 2, 3, 4\]

• Where p and q are defined as follows:

\[
\begin{align*}
 p_1 &= -\Delta x \quad q_1 = x_0 - x_{\text{min}} \\
 p_2 &= \Delta x \quad q_2 = x_{\text{max}} - x_0 \\
 p_3 &= -\Delta y \quad q_3 = y_0 - y_{\text{min}} \\
 p_4 &= \Delta y \quad q_4 = y_{\text{max}} - y_0
\end{align*}
\]

\[
\begin{align*}
 -u\Delta x &\leq x_0 - x_{\text{min}} \implies x_{\text{min}} \leq x_0 + u\Delta x \\
 u\Delta x &\leq x_{\text{max}} - x_0 \implies x_0 + u\Delta x \leq x_{\text{max}} \\
 -u\Delta y &\leq y_0 - y_{\text{min}} \implies y_{\text{min}} \leq y_0 + u\Delta y \\
 u\Delta y &\leq y_{\text{max}} - y_0 \implies y_0 + u\Delta y \leq y_{\text{max}}
\end{align*}
\]
COMPUTING THE INTERSECTION POINT

• The line intersects a given boundary when the following is true:

\[(u)p_k = q_k\]

• Therefore, to get \(u\):

\[u = r_k = \frac{q_k}{p_k}\]

• This gives us our intersection point.

• If \(p_k = 0\), then the line is parallel to the boundary \(\rightarrow\) check value of \(q_k\):
 • If \(q_k < 0\) \(\rightarrow\) completely OUTSIDE boundary
 • Otherwise \(\rightarrow\) INSIDE or ON boundary

\[x_{\min} = x_0 + u\Delta x\]
\[x_0 + u\Delta x = x_{\max}\]
\[y_{\min} = y_0 + u\Delta y\]
\[y_0 + u\Delta y = y_{\max}\]
VALUE OF P_k

• If $p_k = 0$ → line is parallel to the boundary
• If $p_k < 0$ → line goes from OUTSIDE to INSIDE the boundary
• If $p_k > 0$ → line goes from INSIDE to OUTSIDE the boundary
FULL ALGORITHM

• Start with u₁ and u₂ (starting and ending parameter values of line)
 • u₁ = 0, u₂ = 1
 • For each clipping boundary (can implement as nested if statements):
 • Compute pₖ and qₖ values
 • If (pₖ != 0)
 • Compute rₖ
 • If (pₖ < 0) → OUTSIDE to INSIDE → u₁ = rₖ ONLY if line will be shorter
 • If (pₖ > 0) → INSIDE to OUTSIDE → u₂ = rₖ ONLY if line will be shorter
 • If at any point (u₁ > u₂) → REJECT LINE
 • Otherwise (pₖ = 0)
 • If (qₖ < 0) → line is parallel to AND outside boundary → REJECT LINE
 • If after all boundary checks line is NOT rejected → use values of u₁ and u₂ to compute line endpoints
LIANG-BARSKY VS. COHEN-SUTHERLAND

• Liang-Barsky \rightarrow generally more efficient than Cohen-Sutherland
 • Only one divide per boundary check
 • Window intersections only computed once when final values of u_1 and u_2 are computed
 • Cohen-Sutherland \rightarrow may repeatedly calculate intersections, even if line is completely outside clip window

• To extend to non-rectangular clipping regions \rightarrow use parametric lines for boundaries
POLYGON FILL-AREA CLIPPING: INTRODUCTION
LINE CLIPPING VS. POLYGON CLIPPING

• Polygon clipping → cannot just use line clipping on the edges! → in general, does not produce closed polyline!
CLIPPING POLYGONS

• We can look at the vertices of the polygon:
 • If ALL inside clipping boundary → KEEP polygon
 • If ALL outside any ONE of the boundaries → DISCARD polygon

• Otherwise → locate polygon intersection positions with clipping boundaries
 • Convex → check each boundary → output new vertex list to next boundary check
 • Concave → must be able to output MULTIPLE vertex lists (polygon may break up into multiple polygons)
SUTHERLAND-HODGMAN POLYGON CLIPPING
INTRODUCTION

- Sutherland-Hodgman Polygon Clipping
 - By default, only handles convex polygons → only produces one list of vertices
 - Can be modified to do concave as well
BASIC IDEA

• Sends pairs of endpoints through a series of clippers: left, right, bottom, top
• For a given pair of endpoints v1 and v2, there are 4 possibilities with respect to a boundary:
 • Both v1 and v2 are INSIDE \rightarrow output v2 only
 • v1 is INSIDE and v2 is OUTSIDE \rightarrow intersect v1-v2 with boundary to get v2$'$ \rightarrow output v2$'$
 • Both v1 and v2 are OUTSIDE \rightarrow output NOTHING
 • v1 is OUTSIDE and v2 is INSIDE \rightarrow intersect v1-v2 with boundary to get v1$'$ \rightarrow output v1$'$ AND v2
<table>
<thead>
<tr>
<th>Input Edge:</th>
<th>Left Clipper</th>
<th>Right Clipper</th>
<th>Bottom Clipper</th>
<th>Top Clipper</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1,2}</td>
<td>(in-in) → {2}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>{2,3}</td>
<td>(in-out) → {2′}</td>
<td>{2,2′}: (in-in) → {2′}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{3,1}</td>
<td>(out-in) → {3′,1}</td>
<td>{2′,3′}: (in-in) → {3′}</td>
<td>{2′,3′}: (in-out) → {2″′}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>{3′,1}: (in-in) → {1}</td>
<td>{3′,1}: (out-out) → {}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{1,2}: (in-in) → {2}</td>
<td>{1,2}: (out-in) → {1′,2}</td>
<td>{2″′,1′}: (in-in) → {1′}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{2,2′}: (in-in) → {2′}</td>
<td>{1′,2}: (in-in) → {2}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>{2,2′}: (in-in) → {2′}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>{2′,2″′}: (in-in) → {2″′}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PARALLEL EXECUTION

- As soon as one clipper outputs a pair of endpoints, it can pass it to the next clipper → allows parallel execution of clippers 😊
CONCAVE POLYGONS?

- Only one vertex list sent along → last vertex linked with last vertex
 - Can create extraneous lines if we try to process concave polygons

- **Alternatives:**
 - Split polygon into convex polygons
 - Check for multiple intersection points on each boundary → split lists (non-trivial to do this, however)
 - Use another algorithm
WEILER-ATHERTON POLYGON CLIPPING
INTRODUCTION

- **Weiler-Atherton Polygon Clipping**
 - Works with both convex and concave polygons
 - Also works with any shape clipping region
BASIC IDEA

• Trace around perimeter of polygon → look for borders that enclose clipped fill region
 • Follow (clockwise or counterclockwise) path around polygon
 • If we hit the clipping boundary → follow boundary until we hit polygon again
• Can get multiple fill regions → separate, unconnected polygons
WEILER-ATHERTON ALGORITHM

- Start at first polygon vertex and follow POLYGON boundary; output vertex list $P = {}$
- While any polygon vertices are “unprocessed”
 - If current vertex unprocessed AND (current vertex inside OR on clipping boundary) → add to P
 - Go to next vertex
 - If following POLYGON boundary:
 - If next vertex = previously processed vertex
 - Output P as new polygon, and clear P to start over → current vertex = last INSIDE-OUTSIDE intersection point
 - If next vertex = intersection point (INSIDE → OUTSIDE)
 - Start following CLIPPING boundary → current vertex = next vertex
 - Otherwise → current vertex = next vertex
 - If following CLIPPING boundary:
 - If next vertex = intersection point (OUTSIDE → INSIDE)
 - Start following POLYGON boundary
 - Current vertex = next vertex
Start at V1
Follow polygon to intersection point V1' -->
Switch to boundary
Remember to come back to V1' later
Follow boundary to B2
Follow boundary to intersection point V3' -->
Switch to polygon
Follow polygon to V1 -->
Already processed; output polygon

Output: \{V1, V1', B2, V3'\}

Start at V1'
Follow polygon to V2 --> outside
Follow polygon to V3 --> outside
Follow polygon to intersection point V3' -->
Already processed; nothing to output
Start at V_1
V_1 to V_1' --> add V_1; follow boundary
V_1' to B_2 --> add V_1'
B_2 to V_6' --> add B_2; follow polygon
V_6' to V_1 --> add V_6'; V_1 already processed

Polygon 1 = \{ V_1, V_1', B_2, V_6' \}

Resume at V_1'
V_1' to V_2 --> V_1' already processed
V_2 to V_3 --> V_2 outside
V_3 to V_4 --> V_3 outside
V_4 to V_4' --> V_4 outside
V_4' to V_5 --> add V_4'
V_5 to V_5' --> add V_5; follow boundary
V_5' to V_4' --> add V_5'; V_4' already processed

Polygon 2 = \{ V_4', V_5, V_5' \}

Resume at V_5'
V_5' to V_6 --> V_5' already processed
V_6 to V_6' --> V_6 outside; V_6' already processed

No output polygon
3D CLIPPING ALGORITHMS
INTRODUCTION

• With 2D clipping, we had 2D boundaries → i.e., lines

• With 3D clipping, we have 3D boundaries → i.e., planes
 • Assuming we have everything in normalized device coordinates, our boundary planes are:

\[
\begin{align*}
x_{\text{min}} &= -1 & x_{\text{max}} &= 1 \\
y_{\text{min}} &= -1 & y_{\text{max}} &= 1 \\
z_{\text{min}} &= -1 & z_{\text{max}} &= 1
\end{align*}
\]

• Moreover, a lot of our 2D clipping algorithms are extendable to 3D
3D REGION CODES
(EXTENDING COHEN-SUTHERLAND)

• In 3D, we use a **6-digit region code**: Far, Near, Top, Bottom, Right, Left
• Bit values:

<table>
<thead>
<tr>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Far</td>
<td>Near</td>
<td>Top</td>
<td>Bottom</td>
<td>Right</td>
<td>Left</td>
</tr>
</tbody>
</table>

- bit 1 = 1 if \((1 + x) < 0 \) (Left)
- bit 2 = 1 if \((1 - x) < 0 \) (Right)
- bit 3 = 1 if \((1 + y) < 0 \) (Bottom)
- bit 4 = 1 if \((1 - y) < 0 \) (Top)
- bit 5 = 1 if \((1 + z) < 0 \) (Near)
- bit 6 = 1 if \((1 - z) < 0 \) (Far)
3D POINT AND LINE CLIPPING

- Point clipping \rightarrow keep only if region code = 000000

- Line clipping \rightarrow similar to Cohen-Sutherland
 - Both 000000 \rightarrow keep whole line
 - Both share a 1 bit \rightarrow reject whole line
 - Otherwise \rightarrow need to compute intersection points
3D LINE SEGMENTS

- Given two line endpoints \(P_1 \) and \(P_2 \), can use parametric form of line:

\[
P = P_1 + (P_2 - P_1)u \quad 0 \leq u \leq 1
\]

- \(u = 0 \rightarrow P_1 \)
- \(u = 1 \rightarrow P_2 \)

- Explicitly, this forms three equations:

\[
\begin{align*}
x &= x_1 + (x_2 - x_1)u \\
y &= y_1 + (y_2 - y_1)u \quad 0 \leq u \leq 1 \\
z &= z_1 + (z_2 - z_1)u
\end{align*}
\]
3D INTERSECTION POINTS

• To get the intersection with each plane, we solve for u given the line equation and the plane equation.

• Example: intersect line with $x_{\text{max}} = 1$:

 \begin{align*}
 1 &= x_1 + (x_2 - x_1)u \\
 u &= \frac{1}{x_1 + (x_2 - x_1)}
 \end{align*}

• If $0 \leq u \leq 1$, then line segment intersects boundary plane.

• If corresponding y and z coordinates equal ± 1 \rightarrow intersection point inside view volume.

• Can progressively cut off parts of line outside boundaries and recompute region codes.
DEALING WITH 3D OBJECTS

• Can test polyhedron for trivial acceptance or rejection:
 • Look at vertices
 • Look at bounding sphere
 • Etc.
• Otherwise, more complicated
 • One approach:
 • Divide surface into triangle strip
 • Clip triangles using Sutherland-Hodgman on each of the six clipping planes
 • Get output vertices of final strip
ARBITRARY CLIPPING PLANES

• Might want to:
 • Isolate / clip off irregularly shaped object
 • Eliminate part of scene (special effect)
 • Slice off section of object (show interior)

• Specify clipping boundary using full plane equation: \(Ax + By + Cz + D < 0\)
 • Anything satisfying that equation \(\rightarrow\) clipped from scene

• Testing line segment:
 • Test endpoints (make sure not completely in front of or behind plane)
 • Otherwise, calculate intersection point:

\[
P = P_1 + (P_2 - P_1)u \quad 0 \leq u \leq 1
\]

• Testing a solid object \(\rightarrow\) intersect each polygon face