Introduction

- There are times we want to “improve” the quality of an image
 - Subjective improvement (“looks better”)
 - Emphasize important information
 - Removing/weakening noise

- Some of the approaches:
 - Histogram Equalization
 - Image Filtering
 - Other approaches:
 - Basic Intensity Transformations
 - Image Subtraction
 - N-Images Averaging
Histogram Equalization

- **Procedure:**
 - Compute histogram of image
 - Normalize histogram (divide by total number of pixels)
 - Get Cumulative Distribution Function (CDF) of histogram

 \[
 s = T(r) = CDF(r) = \frac{(L-1)}{N} \sum_{j=0}^{r} n_j
 \]
 - Use CDF (multiplied by 255) to reassign pixel values
 - \(s = T(r) = 255 \times CDF(r) \)

- **Problem:**
 - If first value (\(r = 0 \)) dominates histogram \(\rightarrow \) image washed out after equalization!
Histogram Stretching

- To fix this, we need to stretch out the values
 - Get the value of CDF[0] and subtract it from every value
 - Get value of CDF[255] and divide all values by CDF[255]
 - Then, perform remapping
Resulting Image after Histogram Equalization and Stretching
Image Filtering

- One can use image filters to:

 - Blur an image (15x15 Gaussian)
 - Sharpen an image (Laplacian)
 - “Enhance” an image (7x7 Median)
Other Image Enhancement Approaches

- **Intensity Transformations**
 - E.g., log transform

- **Image Subtraction**

- **N-Images Averaging**
 - Get average of multiple images to filter out noise