Intensity (Gray-Level) Transformations

- Intensity (or Gray-Level) Transformations
 - \(s = T(r) \)
Types of Intensity Transformations

- Basic Transformations
 - Linear
 - Original
 - Negative
 - Piece-wise linear
 - Bit-plane slicing
 - Log
 - Power-Law (Gamma)

- Histogram equalization
Basic Transformation Functions
Linear Transforms

- Original $\rightarrow s = r$

- Negative $\rightarrow s = L - 1 - r$
Linear Transforms

- Piece-wise linear
 - **Contrast stretching** = increase range of intensity levels
 - **Intensity-level slicing** = brighten/darken certain intensity range
 - **Zig-zag** = when input range >> output range
Bit-Plane Slicing

- Can decompose 8-bit image into “bit planes”

http://hwshow-ipc.blogspot.com/2009/12/hw5-8-bit-plane-slicing.html
Log Transformations

- $s = c \log(1 + r)$
 - When input range $>>$ display range
Power-Law (Gamma)

- $s = cr^\gamma$
 - $\gamma = \text{Greek letter gamma}$
 - More flexible than log transform
 - Used in \textit{gamma correction}
 - Transforms image to display correctly on given device
 - Needed because of non-linear voltage-to-intensity response
Histograms

- Histogram – discrete probability function
 - Bin for each possible value
 - Bin contains either:
 - Number of pixels with given gray value
 - OR
 - Probability value from 0.0 to 1.0

\[P_r (r) = \frac{n_r}{N} \]

- where \(N \) = total # of pixels and \(n_r \) = # of pixels with \(r \) intensity
Histogram Equalization

- Histogram Equalization
 - Transform grayscale values so that histogram is more evenly distributed
 - Use CDF (Cumulative Distribution Function) as transformation function $T(r)$

$$s = T(r) = (L-1) \sum_{j=0}^{r} P_r(j) = \frac{(L-1)}{N} \sum_{j=0}^{r} n_j$$