Introduction

- We’ll get to edge detection in more detail in the future…

- For now, let’s assume you have an edge image
 - Binary image:
 - 0 = not edge
 - 1 (or 255) = edge point
Example of Edge Image
How Do We Find Straight Lines?

Brute force approach:
- For every pair of points, find all subsets of points close to the line formed by those points

- So: \(n(n-1)/2 \sim n^2 \) lines to check
 - \((n)(n(n-1))/2 \sim n^3 \) comparisons of every point to all lines

- There is a better way, however…
HOUGH TRANSFORM FOR LINES
Hough Transform Introduction

- Consider a point \((x_i, y_i)\) in an image

- General equation of a line in **slope-intercept** form:

 \[y_i = ax_i + b \]

- Infinitely many lines pass through \((x_i, y_i)\)
Parameter Space

- Right now, x and y are the variables while a and b are fixed \rightarrow in xy space

$$y_i = ax_i + b$$

- What if x and y were fixed and a and b were the variables? This would be in parameter space:

$$b = -x_i a + y_i$$
Parameter Space

- Every point \((a', b')\) in parameter space is the equation of a single line in \(xy\) space
 - \(a' = \) slope
 - \(b' = \) intercept

\[
y = a'x + b'
\]
Parameter Space

- We said before that there are infinitely many lines (in xy) that go through a given point \((x_i, y_i)\)

- In parameter space, this means that \((a, b)\) varies while \((x_i, y_i)\) remains fixed
 - However, given a value of \(a\), only certain values of \(b\) will work
 - Example: if \((x = 5, y = 3)\), and \(a = 2 \rightarrow b\) has to equal

\[
b = -x_i a + y_i = -(5)a + 3 = -5(2) + 3 = -10 + 3 = -7
\]
So, in parameter space, all of the lines that could go through \((x_i, y_i)\) are represented by a single line in parameter space:

\[
\begin{align*}
 y &= ax + b \\
 b &= -x_ia + y_i
\end{align*}
\]
Quick Recap

- Single line (variable x and y)
- Point (a,b) in parameter space
- All the lines going through a fixed (x,y)
- Single line in parameter space (variable a and b)
Two Points in xy Space

- Given two points \((x_i, y_i)\) and \((x_j, y_j)\) in xy space, only one line goes through them
 - All lines going through \((x_i, y_i)\) \(\Rightarrow\) \(b = -x_i a + y_i\)
 - All lines going through \((x_j, y_j)\) \(\Rightarrow\) \(b = -x_j a + y_j\)
 - Single line in xy space \(\Rightarrow\) one point \((a', b')\) in parameter space

- Intersection of \(b = -x_i a + y_i\) and \(b = -x_j a + y_j\) in parameter space \(\Rightarrow\) line in xy space that goes through both points

\[
egin{align*}
b &= -x_i a + y_i \\
b &= -x_j a + y_j
\end{align*}
\]

\((a', b')\) in parameter space

Line that goes through both points

\(b' = x a' + y\)
Original Problem

- We need to find the lines in the image

- What if we considered a set of possible lines?
 - A set number of values of a and b → a **grid in parameter space**
 - Have a counter for each pair (a,b)
 - If a point in xy space goes through a given line (a,b), increment counter
Problem

- a is the slope of the line \rightarrow approaches infinity as line becomes vertical.

- *Alternative:* use polar coordinates!

\[x \cos \theta + y \sin \theta = \rho \]
Meaning of \((\rho, \theta)\)

- The meaning of the parameters:
 - \(\rho =\) distance of line from origin
 - \(\theta =\) angle between X axis and line connecting line to origin

\[x \cos \theta + y \sin \theta = \rho \]
Polar Form vs. Implicit Form

- The vector orthogonal to the line is given by \((\cos \theta, \sin \theta) \Rightarrow \text{line’s NORMAL}\)
- So, we can turn this:
 \[x \cos \theta + y \sin \theta = \rho\]
- …into this:
 \[Ax + By = \rho\]
 \[Ax + By - \rho = 0\]
 \[Ax + By + C = 0\]
- …which is effectively the implicit form of a line!
 - We can also use this form, if \(P = (x,y)\):
 \[P \cdot N - \rho = 0\]
Hough Transform for Lines

- Subdivide $\rho \theta$ parameter space into accumulator cells
 - $-90^\circ \leq \theta \leq 90^\circ$
 - $-D \leq \rho \leq D$
 - $\theta_{\text{inc}} = \text{increment of } \theta$
 - $\rho_{\text{inc}} = \text{increment of } \rho$
- where D = max distance between opposite corners of image
- Initially set all accumulator cells to zero
- For every non-background point (x_k, y_k) in xy plane:
 - Cycle through all values of θ (incrementing by θ_{inc})
 - Solve for $\rho \rightarrow$ round to nearest ρ cell
 - Increment accumulator cell (ρ, θ)
Example: Hough Transform

- Let’s say we have the following 3 points and our accumulator array:
Example: Hough Transform

- \((0,0)\)

 \[
 0 \cos \theta + 0 \sin \theta = \rho \\
 \rho = 0 \\
 \]

 - \(\theta = 0^\circ\)

 \[
 \rho = 0 \\
 \]

 - \(\theta = 90^\circ\)

 \[
 \rho = 0 \\
 \]
Example: Hough Transform

(1,0)

\[1 \cos \theta + 0 \sin \theta = \rho \]

\[\rho = \cos \theta \]

- \(\theta = 0^\circ \)
 \[\rho = \cos 0 = 1 \]

- \(\theta = 90^\circ \)
 \[\rho = \cos 90 = 0 \]
Example: Hough Transform

- $(1, 1)$

\[1 \cos \theta + 1 \sin \theta = \rho \]
\[\rho = \cos \theta + \sin \theta \]

- $\theta = 0^\circ$
 \[\rho = \cos 0 + \sin 0 \]
 \[= 1 + 0 = 1 \]

- $\theta = 90^\circ$
 \[\rho = \cos 90 + \sin 90 \]
 \[= 0 + 1 = 1 \]
Example: Hough Transform

- Final accumulator →

- Most likely lines:
 - $\rho = 0, \theta = 90^\circ$
 \[
 x \cos 90 + y \sin 90 = 0
 \]
 \[
 y = 0
 \]
 - $\rho = 1, \theta = 0^\circ$
 \[
 x \cos 0 + y \sin 0 = 1
 \]
 \[
 x = 1
 \]
Computational Complexity

- Accuracy determined by size of increments for θ and ρ

- Complexity: linear in n (number of non-background points)
 - Before: n^3
Problem with Previous Example

- What about THIS line???

- We didn’t get this line BECAUSE our accumulator array did not have sufficient values
 - Specifically, we would have needed $\theta = 135^\circ$

- Similar problem occurs if we don’t have small enough increments for θ
OpenCV Hough Lines

- Two different versions:
 - HoughLines() → standard Hough Transform
 - Gives θ and ρ for each line
 - HoughLinesP() → uses more efficient version
 - Also gives endpoints of lines
OpenCV: HoughLines()

- void HoughLines(InputArray image,
 OutputArray lines,
 double rho, double theta,
 int threshold)

 - **image** → input image
 - **lines** → lists of lines → vector<Vec2f>, each with (ρ, θ)
 - **rho** → increment size for ρ in pixels (usually 1)
 - **theta** → increment size for θ in radians (usually CV_PI/180.0)
 - **threshold** → minimum accumulator value

- HoughLinesP() has very similar parameters
Output of HoughLines()
Output of HoughLinesP()
HOUGH TRANSFORM EXTENDED
Hough Transform Extended

• The Hough Transform is applicable to any function of the form $g(v,c) = 0$
 ◦ where:
 • $v = \text{vector of coordinates}$
 • $c = \text{vector of coefficients}$
Hough Transform on Circles

- Given the formula of a circle:
 \[(x - c_1)^2 + (y - c_2)^2 = c_3^2\]

- We can use the Hough Transform to detect circles

- Accumulator cells are 3D now: \((c_1, c_2, c_3)\)
OpenCV: HoughCircles()

- void HoughCircles(InputArray image, OutputArray circles, int method, double dp, double minDist, double param1=100, double param2=100, int minRadius=0, int maxRadius=0)

- **image** ➔ input image
- **circles** ➔ vector<Vec3f> of circles, with (x,y,radius)
- **method** ➔ has to be set to cv::HOUGH_GRADIENT
- **dp** ➔ inverse ratio of accumulator resolution to image resolution (1 = same)
- **minDist** ➔ minimum distance between detected circles
- **param1** ➔ higher threshold for Canny edge detection
- **param2** ➔ minimum accumulator value
- **minRadius, maxRadius** ➔ minimum and maximum radius
Output of Hough Circles